Journal of Organometallic Chemistry, 128 (1977) C15-C17 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

SOLVENT INDUCED IONISATION OF T-ALLYLDICARBONYLMOLYBDENUM(II) COMPLEXES

B.J.Brisdon^{*} and M.Cartwright

School of Chemistry, University of Bath, Bath BA2 7AY (Great Britain) (Received January 31st, 1977)

Summary

 $[MoCl(\eta-C_{3}H_{5})(CO)_{2}(MeCN)_{2}] \text{ dissolved in aprotic solvents is}$ extensively ionised to $[Mo(\eta-C_{3}H_{5})(CO)_{2}(MeCN)_{3}]^{\dagger}[Mo_{2}Cl_{3}(\eta-C_{3}H_{5})_{2}(CO)_{4}]^{-}$ with the liberation of free acetonitrile. The corresponding bromocomplex shows similar but less pronounced ionisation in $(CD_{3})_{2}CO$, whereas the iodo-complex retains its molecular structure.

While investigating some substitution reactions of complexes of the type $[MoX(\eta-C_3H_5)(CO)_2(MeCN)_2]$, where X = halide, it was noted that the reactions of the chloro-complex (I) dissolved in acetonitrile were sometimes anomolous [1]. Despite the frequent use of these compounds for the synthesis of a wide variety of molybdenum(O) and (II) complexes [2-5], only one report on the spectroscopic properties of this series of compounds has appeared [6], consequently the exact nature of the species present in solution was reinvestigated in an attempt to clarify our observations.

In CD_3CN solutions of (I), ¹H NMR revealed three allyl-containing species with chemical shifts typical of anionic, cationic and neutral complexes (Table 1). Addition of EPF_6 resulted in the precipitation of KCl and the complete conversion of the allyl-containing species to the

 $6[Moc1(T-C_{3}H_{5})(CO)_{2}(MeCN)_{2}] \rightleftharpoons 4[Mo(T-C_{3}H_{5})(CO)_{2}(MeCN)_{3}]^{+} + [Mo_{2}C1_{3}(T-C_{3}H_{5})_{2}(CO)_{4}]^{-} + 3C1^{-} (2)$

$$[Mo_2C1_3(1-C_3H_5)_2(CO)_2(MeCN)_3] + [Mo_2C1_3(1-C_3H_5)_2(CO)_4] + 3MeCN$$
(1)

species from the neutral bis-MeCN adduct. $3[MoC1(7-C_3H_5)(CO)_2(MeCN)_2] \rightleftharpoons [Mo(7-C_3H_5)(CO)_2(MeCN)_2]$

cationic form. Filtration and evaporation of the solvent yielded the new complex $[Mo(\eta-C_3H_5)(CO)_2(MeCN)_3]PF_6$ (II). Addition of excess Ph₄AsCl to solutions of (I) or (II) in acetonitrile resulted in the formation of the known [7] anionic species $[Mo_2Cl_3(\eta-C_3H_5)_2(CO)_4]^-$ (III). Two equilibria can account for the formation of these ionic

* d = doublet, m = multiplet, tt = triplet of triplets

****** A = anion, N = neutral complex, C = cation

Complex	CH ₂ (anti)	J(Hz)	CH ₂ (syn)	J(Hz)	СН	Assignment
(1)	0.92(d)*	9.2	3.39(d)	6.4	3.72(ш)	A**
-	1.12(d)	9.4	3.26(d)	6.6	3.98(tt)	N
	1.48(d)	9.7	3.59(d)	6.6	4.08(tt)	Ċ
(11)	1.47(d)	9.7	3.58(d)	6.6	4,06(tt)	С
(111)	0.92(d)	9,2	3.39(d)	6.5	3.72(tt)	Α
(17)	1.15(d)	9.0	3.28(d)	6.2	4.00(tt)	N
(V)	1.23(d)	9.5	3.34(d)	6.2	4.16(tt)	N

100 MHz PMR DATA FOR THE ALLYL PROTONS OF COMPLEXES I - V IN CD_3CN (IN PPM RELATIVE TO TMS)

C16 TABLE 1 Measurements of the relative intensities of the allyl signals in the NMR spectrum of CD_3CN and $(CD_3)_2CO$ solutions of (I) indicated that reaction (1) was occurring with an equilibrium constant (K) of approximately 7 x 10³ mol² dm⁻² at 300K. In CDCl₃, the same ionisation process occurred but with a smaller value of K (6 x 10² mol² dm⁻²).

The corresponding neutral bromo (IV) and iodo (V) complexes dissolved in CD_3CN , each showed one strong set of allyl signals which were attributable to the neutral complex with only trace amounts of other allyl species. In $(CD_3)_2CO$, (IV) also formed anionic and cationic allyl complexes (K, 7 x 10^{-2} mol² dm⁻²), whereas (V) did not. Addition of CD_3CN to solutions of (IV) in $(CD_3)_2CO$ suppressed the ionisation as expected for an equilibrium of type (1). The non-ionisation of the iodo-complex may be related to the inability of the iodide ion to stabilize a halogen-bridged anion of the type $[Mo_2X_3(^{T}-C_3H_5)_2(CO)_4]^-$ [8].

REFERENCES

1	B.J.Brisdon and M.Cartwright, unpublished results.			
2	H.Friedel, I.W.Renk and H.tom.Dieck, J.Organometallic			
	Chem., 26 (1971) 247.			
3	R.B.King and M.S.Saran, Inorg.Chem., 13 (1974) 2453.			
4	S.Trofimenko, J.Amer.Chem.Soc., 91 (1969) 3183.			
5	A.T.T.Hsieh and B.O.West, J.Organometallic Chem., 112			
	(1976) 285.			
6	H.tom.Dieck and H.Friedel, J.Organometallic Chem., 14			
	(1968) 375.			
7	H.D.Murdoch, J.Organometallic Chem., 4 (1965) 119.			
8	H.D.Murdoch and R.Henzi, J.Organometallic Chem., 5 (1966)			
	552.			

C17